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Broken Symmetry in Ideal Magnetohydrodynamic Turbulence

John V. Shebalin"

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23681, USA

A numerical study of the long-time evolution of a number of cases of inviscid, isotropic, incompressible,

three-dimensional fluid and magneto-fluid turbulence has been completed. The results confirm that ideal

magnetohydrodynamic turbulence is non-ergodic if there is no external magnetic field present. This is due

essentially to a canonical symmetry being broken in an arbitrary dynamical representation. The broken

symmetry manifests itself as a coherent structure, i.e., a non-zero time-averaged part of the turbulent

magnetic field. The coherent structure is observed, in one case, to contain about eighteen percent of the

total energy.

*Research supported by the National Aeronautics and Space Administration. This work was performed while the author

was in residence as a Visiting Scientist at the Institute for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research Center, Hampton, VA 23681.
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1 Introduction

Several years ago, a numerical study of isotropic, inviscid, incompressible, two-dimensional (2D) turbu-

lence indicated that ideal magnetohydrodynamic (MHD) turbulence was non-ergodic [1]. A Fourier spectral

method was used, and the non-ergodicity manifested itself in the appearance of significant, non-zero time-

averages for the Fourier coefficients of the turbulent magnetic field. These results contrasted with the

predictions of canonical ensemble theory [2] and indicated the presence of a dynamically broken symmetry.

Here, this work is extended in two ways. First, the dynamics become fully three-dimensional (3D),

and second, a more accurate (third-order) time-integration scheme is used (a comparison is made with the

second-order scheme used previously). The results are qualitatively the same as previously seen, although a

stronger effect is observed. Also, the source of the broken symmetry is more explicitly identified.

2 Basic Equations

The equations which describe ideal, incompressible 3D fluid and magneto-fluid dynamics are

O_B = Vx(uxB) (1)

0_w = Vx(uxw+j×B) (2)

Here, the fluid velocity is u, the vorticity is w = V × u, the magnetic field is B = b + Bo (where b is

the turbulent part and Bo is a constant, externally imposed part), and the current is j = V x b. Also,

V.u=V.B=O.

If B = 0 for all time, then (1) is identically satisfied and (2) assumes the vorticity form of the incom-

pressible Euler equation. If Bo -= 0 while b ¢ 0, then (1) and (2) are unchanged, i.e., symmetric, under the

substitution b ---*-b. If, however, Bo ¢ 0 also, then the equations are no longer symmetric under b ---* -b.

Note that these equations are inviscid. It is well known that solutions to these equations are quite

different from those for dissipative equations, even if the viscosity and resistivity become very small, so long

as they are not identically zero. However, it is possible to determine a priori statistical solutions in the

inviscid case (as will be discussed presently), while it has not proven possible to do this in the dissipative

case.



This provides for a very practical use of the results presented herein, that is, as a test of the correctness

of any computer code which attempts to simulate incompressible, homogeneous, dissipative turbulence. In

any such code, the viscosity (and resistivity) can be set identically to zero; the statistical properties of a

numerical solution must then be described by the inviscid theory described here. There are, however, some

refinements which must be incorporated into existing theory; these refinements, the existence of broken

symmetry and non-ergodicity in ideal (3D) MHD turbulence, are the subject of this paper.

3 Canonical Ensembles

The theory of canonical or 'absolute equilibrium' ensembles, as it applies to homogeneous turbulence, has

been discussed extensively before [1, 3] (and the many references therein). In brief, the physical variables u,

b, w, and j are expanded in truncated Fourier series, for example:

b(x,t)- i k,__
N3/_ _ b(k,t)e ikx. (3)

kmln

Here, the sum (and each similar sum appearing henceforth) is over all k such that kmin < lkl g kma, < N/2,

where N is the number of points in each of the three spatial dimensions. Since the various fields, such as b(x),

are real, their coefficients satisfy b(k) = b* (-k), where '*' denotes complex conjugation (here and henceforth,

explicit time-dependence will be dropped for brevity). Also, u(k) = ik-2k × _(k) and j(k) = ik × b(k),

and V.b(x) = 0 _ ik.b(k) = O, etc.

The independent real and imaginary parts of the coefficients u(k) and b(k) can be used to label the axes

of a multidimensional phase space. The corresponding dynamical system is described by a single point in

the phase space, which moves about as the system evolves in time. The probability that the system point

is in any part of phase space can be described by a canonical distribution function which depends only on a

small set of conserved quantities, the integral invariants of the dynamical system. Once the joint probability

distribution has been found, then the equilibrium energy spectra (kinetic and magnetic) are determined,

even though u(k) and b(k) are random variables.

In the case of isotropic, incompressible 3D Euler turbulence (B - 0), the integral invariants are the

energy E and the kinetic helicity Hk. For ideal, isotropic, incompressible 3D MHD turbulence with Bo -- 0,

the integral invariants are the energy E, the cross helicity He, and the magnetic helicity H,n; if Bo _ 0, then



H,n is no longer conserved, although E and Hc are still integral invariants. These three different situations

will now be presented in more detail.

3.1 Euler Turbulence

The integral invariants for incompressible 3D Euler turbulence [4, 5] are

_mm_

E= _ _ [u(k)l 2 and Hk = 27 _'_ u(k).w*(k),
lgmin kmi_

(4)

while the distribution function is

k,.,_ (,a2 - _2k2, _ }
D = C exp(-aE- _H_) where C = H \ ;2-_4-_--_ ]

km_

(5)

The product above (and each product appearing henceforth) is taken over all k such that km_n < Ikl < kin.=,

but only over independent values of k, i.e., if k is used, then -k is not. Using this distribution function, an

expectation value can be defined as

kmtt_

(Q) - / QD H d3u(k)' (6)
_ _'ttin

with which expectation values of the moments of the Fourier coefficients can be found:

(uR(k))= (u1(k))= o,
3N3_

(luR(k)12) = (lu'(k)12) = 2 (_=- #_k2) '

-3Na_k 2

and (uR(k). ¢oR(k)) = (ui(k). wl(k)) - 2 (or2 - _2k2)' (7)

where the subscripts R and I denote real and imaginary parts, respectively, of the complex coefficients, and

where all the components of u(k) for a given k have equal expectation values. A straightforward algebraic

manipulation of these expectation values yields

(Hk)
Z (f_) and _ - a, (8)

(E) (_> - (Hk) 2 <_}

where

Z

1¢ trta¢1 1 _"""

2N 3 Z 1 and a--2N 3 Z k21u(k)l 2"
kratn kmin

Note that the expected value of the mean squared vorticity (the enstrophy _) is determined once the

expectation values (7) of the [u(k)[ 2 are known.



Althoughtheenstrophy_ isnot a conservedquantity,it doeshaveanexpectationvalue,sothat the

parametersc_andfl are functions of only one unknown quantity, (l'_). The quantity Z is the ratio of the

number of independent values of k to N 3, the total number of points in the spatial grid.

3.2 Ideal MHD Turbulence

The integral invariants of ideal, incompressible 3D MHD turbulence with Bo = 0 [6] are

1 1 _'_

E - 2N 3 E []u(k)12 + Ib(k)l=] , H= - 2N 3 E u(k). b*(k),
kmin kmla

and H,,_ = _ _ k-2j(k), b*(k), (O)
kmin

while the distribution function is

D=Cexp(-.E-flH_-THm), where C= 1] (.2_/72/4)2_.272/k2 } (i0)
_m*n

(Please note that the formulas appearing in this subsection correct those which appeared previously [1].)

Using this distribution function, expectation values (where (6) now includes integration over the inde-

pendent components of the b(k)) for moments of the Fourier coefficients can be found:

(uR(k)) = <us(k)) = 0, (luR(k)I 2) = (luz(k)l _) = 3N3 [
(.2 ft..>/4 72/k 2)

'

(bR(k)} = (bt(k)} = 0, (lbn(k)12} = (lbs(k)12) = 3NZ[

. (.2 -- fl2/4)

a(tin(k). b_(k)) = (us(k)-b;(k)} = 7N (a2 --_72"_--_-_'_721k2 '

where all the components of u(k) for a given k have equal expectation values, and where all the components

of b(k) for a given k also have equal expectation values. Note that the energy spectra in the MHD case (11)

peak at low k = lk[, while in the Euler case (7), it peaks at high k.



A straightforward algebraic manipulation of these expectation values yields

= ZR(R+ 1)(E) _ = _2(R+ 1)<He)

2JR<E> R<E>

(R - 1)(E) (Ern} (12)
7 = (R+l)(H_n)a' where R- (Ek)"

Thus a, fl, and 7 are functions of only one unknown quantity, R, which is the ratio of the expectation values

of the magnetic part of the total energy to kinetic part of the total energy.

The integral invariants of ideal, incompressible 3D MHD turbulence with Bo :P 0 are only E and He, as

given above, while Hm is no longer conserved. In this case, R = 1 and 7 = 0.

3.3 Distribution Parameters

The parameters a, fl, and 3', which appear in the canonical distribution functions, must be given specific

values in order that definite predictions can be made. This can be done in a number of ways. First, it

can be assumed that the integral invariants of the various cases have fixed values (although they actually

fluctuate slightly in the time evolution of a canonical system). The distribution parameters then vary only

with respect to a single quantity: (f_/for 3D Euler turbulence and R for ideal 3D MHD turbulence (except

for the case where Bo _ 0, where R = 1). The equilibrium entropy [1], S = So - logC, where C is the

normalizing coefficient of the distribution function, is thus also a function of a single quantity. Since S is a

minimum with respect to the distribution parameters [7], then this fact can be used to uniquely determine

(ft) or R, as the case may be. Note that this can be done prior to any numerical simulation of the time

evolution of an isotropic, inviscid turbulent system.

A second method is to run a numerical simulation and actually determine the time-averaged values

of all the quantities Q which are required, so that Q can be substituted for (Q). In particular, _ _ (_) or

/_ _ R. A third, and more practical method, is to use the time-averaged values of the necessary integral

invariants, but determine (f_) or R through a least-squares procedure. This third method will turn out to

be the most useful.

Once the canonical predictions of the moments of u(k) and b(k) are available, and numerical simulations

have produced corresponding time-averages, then comparisons can be made. This is essentially a test of the



ergodicity of the various dynamical systems, i.e., the equivalence of ensemble and time averages. Numerical

results, including these time averages, are presented next, followed by a discussion addressing any anomalies

which are observed.

4 Numerical Results

As in the previous work [1], a Fourier spectral method [9] with shifted-grid dealiasing [10] was used to

solve the dynamical equations numerically. In the previous effort, however, the time-integration method

was a second-order Runge-Kutta scheme (RK2), while the method primarily employed in this work was a

third-order scheme, consisting of an Adams-Bashforth predictor coupled with an Adams-Moulton corrector

(AB3) [8]. The advantages of AB3 over RK2 are higher accuracy and higher speed, although slightly more

storage was required in computer memory. In order to better relate the 3D results obtained here to the 2D

ones obtained previously [1], two 3D runs which had used AB3 were partially re-run using RK2, with initial

conditions remaining the same.

The numerical simulations performed in the course of this work are presented in Table 1. All runs were

done on a Cray YMP, using a 163 grid with 2k,,_a. = 56 and At = 0.001. Each run is designated by three

characters: the first is either E (for Euler) or M (for MHD), the second is a number representing a different

set of initial conditions, and the last denotes the time-integration method used, A (for AB3) or R (for RK2).

(The 'initial conditions' include the values of Bo and kmi,, as well as {w(k), b(k); km_,_ < Ikl < kmax} at

t = 0.) Each of the integral invariants listed in Table 1 fluctuated no more than a few parts per million

during their respective simulations.

In each of the simulations, the initial spectra satisfied lu(k)l 2 ~ Ib(k)l 2 ~ k4exp (-2k_/k2o) with ko = 2

(although the exact shape of the initial spectra was not critical; the critical initial quantities were the values

of the total energy and helicities). Time-averages of the components of _b(k) and _o(k) as well as of their

squares (14n(k)P, R: real, etc.) were taken, averaging every 50 time steps. (There are six 'components'

of co(k) and six of b(k), since the x-, y-, and z-components of these each have a real and an imaginary

part.) The second-order moments which correspond to the same value of k = lkl can be combined to produce



averagemodal energies

1 1

Ek(k) = _ _ lu(k)P and Era(k)= _ _ ]b(k)p, (13)

where the sum _-'_ is only over all k with the same value of k = Ikl and where nk is the number of wave

vectors k in such a sum. The modal values of enstrophy and mean squared current were then f_ = k2E, k(k)

and J = k2Em(k), respectively.

These modal energies can be compared with those obtained from ensemble-averaging, once the various

distribution parameters are found, as described previously. Remember that the distribution parameters for

the Euler cases depended on the average value of the enstrophy f2, while those for the MHD cases depended

on the average ratio of magneticto kinetic energy R. For example, in the MHD run M1A, a time-average

yields Rt = 1.50795, equilibrium entropy minimization gives R_ = 1.50799, and minimizing the root-mean-

square (rms) error between time- and ensemble-average modal energy spectra produces Rrm, = 1.50599.

Using the rms values in all cases gives the distribution parameters presented in Table 2.

To see how well the time- and ensemble-averaged modal energy spectra compare, consider Figure 1, where

representative spectra are shown (log = loglo in the Figures). Figure la corresponds to case M2A where

kmin = 1; the goodness of fit is typical of all the Euler and MHD runs. Figure lb corresponds to case M3A

where kmin = 2; the initial values of the w(k) and b(k) for M3A were the same as those of M2A except that

all of the Ik[ = 1 coefficients were set to zero and not allowed to grow during the simulation. These graphs

show the average energy for modes with the same k = Ikl; since there are twice as many mcdes with k = 2

as with k = 1, Figures la and lb indicate that the modes with k = krnin contain the same totalenergy. The

exact value of kmin is thus not qualitatively important in any given simulation.

It is informative to consider the exact values taken by the Fourier modes during their time evolution.

For example, the values of w(k) and b(k) for k =(1,0,0) for run M1A are shown in Figure 2, where the time

evolution is shown by plotting the real vs the imaginary parts of the coefficients for all times between t = 0

and t = 1000. The behavior is decidedly non-ergodic since the components clearly do not have zero mean

values, and thus do not match the ensemble prediction. It is interesting to note that although average modal

behavior (Figure 1) is essentially as predicted, the detailed evolution of the modal coefficients is not. Also,

notice in Figure 2 that we appear to have

_% ",_ iw_ and bu .._ ibm. (14)



Thisrelationshipwasalsoapparentforalltheothercoefficientswhichwereexamined,aslongasthecoefficient

meanvaluesweresufficientlylargerthanthecorrespondingstandarddeviation.Therelationship(14)is,in

fact,b ~ V x b, i.e., j x b _ 0. In other words, the ideal MHD has become force-free [11], apparently on a

mode-by-mode basis.

The average coefficients D(k) and l_(k) can be thought of as the coherent structure underlying these

simulations of ideal, isotropic turbulence. These coefficients can be used to calculate the coherent energy

present in the turbulence:

1 1

E_(k) = 2--_ _t_(k)l 2 and E_,(k)= 2-_;_lb(k)l 2, (15)
k k

(The various helicities can also be calculated in a similar manner.) The average coefficients exist for all cases

at t = 250, so that a comparison can be made; the results of this are presented in Table 3. Notice that the

coherent quantities in Table 3 are a sizeable fraction of the corresponding total quantities in Table 1; for

example, the coherent energy in run M1A is 18.8% of the total energy, while the coherent magnetic helicity

in the same run is 83% of the total!

For those runs which went beyond t = 250, the coherent energies between t = 520 and t = 750 are

shown in Figure 3. It is evident that the MHD simulations with Bo = 0 (M1A and M2A) have the largest

coherent energies, and that this coherent energy is primarily magnetic. The MHD case with Bo = 1 (M4A)

has effectively no coherent energy, while in the Euler case (E2A), the coherent energy is clearly decaying

(although still 3% of the total at t = 750).

5 Broken Symmetry

In a Fourier representation (3), the basic equations (1) and (2) take the form

b(k) = ik × _ [u(p) × b(q)] +i(k.no) u(k) (16)

p+q=k

¢b(k) = ik× Z [u(p)×co(q)+j(p)×b(q)] +i(k.Bo) j(k) (17)

p+q=k

These equations have the symmetry (i.e., invariance under) w(k) ---+ elkaw(k), b(k) ---* eikab(k) which

merely reflects the isotropy of space: i.e., place x _ x + a into (3). However, an average over the displace-

ments a merely reproduces the known fact that the k = 0 modes of w and b are zero and remain so, i.e., do



notparticipatein thedynamicsof theidealMHDturbulence.

In thecasewhereBo= 0,theequations(16)againalsohavethesymmetryb --*-b; theimportof this

is that allmembersof theensembleof possiblerealizationsofidealMHDturbulenceare,in fact,paired:if

{u(k),b(k); kr_,_ < Ikl < kr._.} is a possible realization, then so is {u(k),-b(k); km_,_ < Ikl < k,._.}.

Thus what is calculated in the ensemble average (b(k)) is really ([b+(k)+ b_(k)l/2), where b+(k) =

b(k) and b_(k) = -b(k), in which case (b(k)) = 0 automatically. However, (b+(k)) and (b_(k)) are

undefined; if they are non-zero, then the ensemble symmetry is said to be broken in a given realization (and

the dynamics are non-ergodic). That they can be non-zero, and substantially so, has been demonstrated in

the numerical results presented herein.

6 Conclusion

In this paper, a numerical study of 3D Euler and ideal MHD turbulence was presented. A number of

different cases were presented in which the dynamic evolution was allowed to proceed for a considerable

length of dimensionless simulation time. These results clearly demonstrate the presence of broken symmetry,

non-ergodicity, and coherent structure in ideal 3D MHD turbulence.

Realistic MHD turbulence (except in superfluids) is not ideal since resistive and viscous processes dissipate

energy. The results presented here then address, rather than practical eases, only numerical simulations in

which fluid and magnetic dissipation can be set identically equal to zero. For these simulations, however,

the ideal theory provides a very useful means of testing computer codes.

An interesting, open question is: Does the non-ergodic behavior seen in the ideal magnetohydrodynamic

case also occur in real geophysical and astrophysical systems where dynamo activity has been observed [11]?

An answer to this question, however, requires the introduction of dissipation into numerical simulations,

along with a substantial increase in grid size. Although this was beyond the scope of the present work, it is

a straightforward extension of it, provided that sufficiently large computers can be utilized.

Additionally, it should be mentioned that there has been some very interesting work in dynamical systems

theory concerning broken symmetry [12]. A full discussion of any connection to the numerical work presented

here is also beyond the scope of the present work.

Finally, I would like to thank Dr. M. Y. Hussaini for the opportunity to spend a year in residence at
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ICASEasaVisitingScientist,andto thankProfessorGeoffreyLilleyfor hisusefulcommentsconcerning

thispaper.
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Run
A_

E1A 0.12

E2A 0.12

E2R 0.25

M1A 0.35

M1R 0.71

M2A 0.35

M3A 0.35

M4A 0.35

Table 1. Numerical Simulations

kmin Bo Total

Time

1

1

1

1

1

1

2

1

E

- 250 0.5000 -.04443

- 750 0.5000 3.142

- 250 0.5000 3.142

0 I000 1.000 -

0 250 1.000 -

0 75O 1.000 -

0 250 " 0.9983 -

1 750 1.000 -

Integral Invariants

Hk I He

0.1326

0.1326

0.1326
J

0.1258

0.1326

Ur_

0.2129

0.2129

0.09973

0.09899

Table 2. Distribution Parameters

E1A 2.624 0.006825

E2A 15.58 -2.062

E2R 15.41 -2.035

M1A 1.774 -0.7825

M1R 1.773 -0.7824

M2A 1.547 -0.7142

M3A 1.616 -0.7205

M4A 1.401 -0.7075

- 17.08 -

- 23.74 -

- 23.79 -

-1.682 - 1.506

-1.681 - 1.506

-1.451 - 1.206

-2.131 - ] 1.301

]!

- I - 1.000
I

II



Table 3. Coherency at t --- 250

Run ]E_

E1A 0.00301

E2A 0.0416

E2R 0.0413

M1A 0.0880

M1R 0.0919

M2A 0.00562

M3A 0.00464

M4A 0.00146

E_ H_

-- -.00110

-- 0.305

-- 0.303

0.179 --

0.172 --

0.0656 --

0.0542 --

0.00148 --

H_ H_

0.0364 0.177

0.0365 0.170

0.0158 0.0635

0.0126 0.0368

0.000421 0.0000955
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Figure 1. Energy spectra for a) M2A and b) M3A; .... theoretical, -....... numerical.
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Figure 2. Components of two vector modes of M1A as they evolve from t = 0 to 1000:

a) vorticity and b) magnetic field.
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